

AFBR-S50-BAS

ToF(Time of Flight)方式測距イメージセンサの基礎

アプリケーションノート

バージョン1.0

Broadcom、pulse のロゴ、Connecting everything、Avago Technologies、Avago、および A のロゴは、米国、 その他の特定の国、および/または EU における Broadcom および/またはその関連会社の商標です。

#### Copyright © 2021 Broadcom. All Rights Reserved.

「**Broadcom**」という用語は、**Broadcom Inc.**および/またはその子会社を指します。 詳細は、<u>www.broadcom.com</u>をご覧ください。

Broadcom は、信頼性、機能、または設計を向上させるために、本書に記載されている製品またはデータを予告なく変更する権利を留保します。Broadcom が提供する情報は、正確かつ信頼できるものと考えられていますが、Broadcom は、本情報の適用または使用、および、本書に記載された製品や回路の適用または使用に起因するいかなる責任も負いません。また、Broadcom の特許権または他者の権利に基づく何らかのライセンスを譲渡することもありません。

# 目次

| AFBR-S50-BAS アプリケーションノート                            | 4     |
|-----------------------------------------------------|-------|
| 1 はじめに                                              |       |
| 2 測定原理                                              |       |
| 2.1 直接 ToF                                          | 4     |
| 2.2 間接 ToF                                          | 4     |
| 3 用語および定義                                           | 5     |
| 3.1 レンジと振幅の計算                                       | 5     |
| 3.2 曖昧さと曖昧さのない範囲                                    | 6     |
| 3.3 二重周波数モード                                        |       |
| 3.4 視野(FoV)                                         | 9     |
| 3.4.1 発光部のスポットサイズ                                   |       |
| 3.4.2 対象物の最小サイズ                                     |       |
| 3.4.3 Tx FoV と Rx FoV の相互作用                         |       |
| 3.4.4 AFBR-S50 モジュールファミリー - 検出特性の概要                 |       |
| 4 静的検出アルゴリズムと動的検出アルゴリズム                             |       |
| 4.1 静的 - ピクセルビニングアルゴリズム(PBA)                        |       |
| 4.1.1 PBA の例                                        |       |
| 4.2 動的 - 動的コンフィグレーションアルゴリズム(DCA)                    |       |
| 4.2.1 DCA の例                                        |       |
| 5 目に対するレーザーの安全性                                     | 21    |
| 5.1 動作中のハードウェアで実施される安全対策                            |       |
| 5.2 動作中にソフトウェアに実装される安全対策                            |       |
| 6 アプリケーションプログラミングインターフェース                           |       |
| 6.1 概要                                              | 23    |
| 6.2 EEPROM データ                                      | 24    |
| 6.3 必要最小メモリー                                        | 24    |
| 7 よくある質問                                            | 25    |
| 7.1 Broadcom の iToF センサーを使用するにはどうすればよいですか?          |       |
| 7.2 AFBR-S50 センサーの FoV とは何ですか? センサーが使用するピクセル数はいくつです | ナか?25 |
| 7.3 レーザークラス1での動作はどのように保証されますか?                      | 25    |
| 7.4 iToF センサーの総合的な性能に影響を与えるのは何ですか?                  | 25    |
| 7.5 なぜ PBA でプレフィルターマスクを使うのでしょうか?                    |       |
| 7.6 AFBR-S50 API をプロジェクトに実装するにはどうすればよいでしょうか?        |       |
| 7.7 SDK の新しいバージョンがダウンロード可能かどうかはどうすればわかりますか?         | 25    |
| 8 参考文書                                              | 27    |
| 改訂履歴                                                |       |

# AFBR-S50-BAS アプリケーションノート

## 1 はじめに

距離や動きの測定には、高ダイナミックレンジ、高速、高精度、および対象の表面素材に依存しないことが要求されます。その要求に応えるべく、ToF(Time of Flight)技術は進化しています。その一方で、システムイン テグレーターやセンサーのユーザーは、用途における要求事項にセンサーの仕様が適合するかを慎重に確認す る必要があります。この作業を容易に進めるため、このアプリケーションノートでは、Broadcom<sup>®</sup> ToF 技術 の基本情報、測定原理の概要、AFBR-S50 センサープラットフォームの製品群を紹介しています。

## 2 測定原理

"Time of flight" という言葉から、光学測定法の基本的な考え方がわかると思いますが、発光部(Tx)から放射 された光が、何らかの物体に反射されて受光部(Rx)に戻る時間を利用することで、距離を測定(約 30cm/ns) できます。

#### 図1: ToF の原理



原則として、2種類の方法によりこの物理現象から距離が導き出されます。

## 2.1 直接 ToF

パルス測距法とも呼ばれます。直接 ToF 方式のデバイスは、単一パルスが a および b を通過する際の経過時間を測定します(図 1 を参照)。最終距離 d を計算する式は以下のとおりです。

$$d = \frac{c_0 \Delta T}{2} \quad (1)$$

co=299792458 <sup>m</sup>/sを真空中の光の速度、ΔTを発光から受光までの経過時間とします。この測距技術は、発 光部の高ピーク出力と高帯域幅に加え、正確な時間計測、単一パルスエッジ検出を必要とし、現実的なコスト に抑えたハードウェアを実現することは簡単ではありません。

## 2.2 間接 ToF

光の伝搬時間を直接取得するのとは異なり、変調された連続波(CW)を使用し、発光連続波と受光連続波の 位相差から距離を測定できます。最終距離 d を計算する式は以下のとおりです。

$$d = \frac{c_0}{2f_{mod}} \frac{\Delta\varphi}{2\pi} \quad (2)$$

この計算には、 $c_0$ 以外に、レーザー変調周波数  $f_{mod}$ と位相差 $\Delta \phi$ を使います。位相差 $\Delta \phi$ は、aとbを通過する光の伝搬時間から生じます(図1を参照)。 $f_{mod}$ は、間接 ToF センサーの明瞭な範囲を定義します。詳しくは、セクション 3.2「曖昧さと曖昧さのない範囲」で説明します。

直接 ToF とは対照的に、連続波を使用する間接 ToF には以下のような利点があります。

- 電子的信号増幅が不要(新たなノイズ源を回避できます)。
- 発光部のピーク出力は、直接 ToF の場合よりも1 桁低く済む。
- パルスのエッジ検出は不要にも関わらず、完全なパルス形状を得られる。
- 単一パルス整形の要件が緩和される。
- 3D 測距と動き検出のために、ASIC の複雑さを軽減できる。
- より小型のモジュールフォームファクターが採用できる。

Broadcom の AFBR-S50 センサー技術は間接 ToF に基づいているため、ToF に関する以降のすべての説明 では iToF と呼びます。

## 3 用語および定義

## 3.1 レンジと振幅の計算

前節で述べたとおり、AFBR-S50のセンサー出力は位相差に基づいて生成されます。これは、iToF ASIC 内で、 受光された信号と位相シフトされた相関信号のクロスコレレーション(図3で説明)を実行することで実現さ れます。相関信号は駆動された発光部の信号から派生されます。デフォルトでは、Broadcom iToF デバイスは、  $\pi/2$ 、 $\pi$ 、 $3\pi/2$ 、 $2\pi$ の4つの位相シフトで動作するように設定されていて、それぞれサンプル S0, S1, S2, S3として、生の値が出力されます。

下の図は、π/2 変移した相関信号でサンプル SO を取得するタイミングを例示したものです。

#### 図 2: iToF の相関信号図



dT<sub>Corr</sub>:位相遅延時間
f<sub>Tx</sub>(t):発光部の信号
f<sub>Rx</sub>(t):受光部の信号
f<sub>Corr</sub>(t):相関信号
(f<sub>Rx</sub>\* f<sub>Corr,i</sub>)(t):受光部の信号と相関信号のたたみ込み、位相がi回シフトされます(i=4)

Broadcom iToF レーザー光源は、常に固定デューティーサイクル 50%の矩形パルスで変調されるため、たたみ込みの出力は、次の図で dTrof に応じて示す 4 つの位相すべてについて、三角形状のチャートとなります。



これらの 4 つのサンプルを使用して、接続されたマイクロコントローラー (MCU) 内のデバイスソフトウェ アが以下の後計算を実行します。

- i. 位相差Δ φ
- ii. 振幅 A
- iii. 距離 d

計算を簡単にするために、いわゆる線形化した正弦信号と余弦信号が以下の式で使用、定義されます。

 $\begin{array}{ll} s \equiv S_2 - S_0 \\ c \equiv S_3 - S_1 \end{array} (3)$ 

ここで、位相差 $\Delta \phi$ は、 $s \ge c$ に応じて以下の式により計算されます。

$$\Delta \varphi(\pi) = \frac{1}{4} \begin{cases} 1 + |\frac{s+c}{2A} & s < 0, c \ge 0\\ 3 + \frac{s-c}{2A} & s \ge 0, c \ge 0\\ 5 + \frac{-s-c}{2A} & s \ge 0, c < 0\\ 7 + \frac{-s+c}{2A} & s < 0, c < 0 \end{cases}$$
(4)

Aは振幅または信号強度であり、以下のように定義されます。

$$A \equiv \frac{1}{2}(|s| + |c|) \tag{5}$$

最終的な距離は、(2)に従って計算されます。

#### 3.2 曖昧さと曖昧さのない範囲

発光部の信号と受光部の信号の位相差に基づく iToF センサーには、曖昧さと呼ばれる物理的限界があります。 位相は周期的な情報であるため、下図の正弦波の例で示すとおり、その値は2πに繰り返し束縛されます。

#### 図4: ラジアン単位の1周期



本質的な曖昧さにより、2πの値を超えた位相は、1周期前の位相と等距離になります。つまり、次の図に示 すとおり、ある対象が1周期/7にではなく、1週期後に現れた場合に距離が曖昧になります。

#### 図5:距離の曖昧さ



図5は、6メートルで2πに達し、ある対象物が8メートル(D)に位置するか2メートル(D)に位置する かを区別できない iToF センサーの例を示し、これは、(2)を以下の式に拡張することによって数学的に表現 されます。

 $d = \frac{c_0}{2f_{mod}} \left( \frac{\Delta \varphi}{2\pi} + N \right) \quad (6)$ 

N=0、1、2…はN番目の周期またはウィンドウとします。

なぜこのようなことが起こるのかをより深く理解するために、式(2)を見てみましょう。

$$d = \frac{c_0}{2f_{mod}} \frac{\Delta\varphi}{2\pi}$$

Δ *φ*=2πの位相差を使用する場合、この式は第2項によって相殺され、以下の式となります。

$$d = \frac{c_0}{2f_{mod}} \quad (7)$$

これで、距離が変調周波数 fmodのみに依存することがわかりました。次の図は、この iToF センサーの変調周 波数と曖昧さのない範囲の関係を示しています。

#### 図 6:変調周波数と曖昧さのない範囲



図6の青い点と線は、曖昧さのない範囲が変調周波数の低下とともに増大していることを示しています。

図 6 に示されたもう 1 つの兆候として、Broadcom の AFBR-S50 センサーに使用される 2 つのデフォルトの、 調整不可能な変調周波数があることが挙げられます。 表1: AFBR-S50 のレンジモード

|         | Broadcom AFBR-S50 | の仕様     |
|---------|-------------------|---------|
| モード     | 曖昧さのない範囲。         | 変調周波数   |
| 短距離     | 6.25 m            | 24 MHz  |
| 長距離     | 12.5 m            | 12 MHz  |
| - DEM + |                   | - トナ かの |

a. DFM なし。セクション 3.3 二重周波数モードを参照。

これらの iToF センサーの本質的な曖昧さによって、測定可能な距離に境界が生じているように思われるため、 次のセクションでは、曖昧さのない範囲の制限を克服し、これを拡張する方法を紹介します。

## 3.3 二重周波数モード

二重周波数モード(DFM)では、2種類の変調周波数によって連続するフレームの位相情報を取得できます。 これらの周波数は、短距離と長距離の公称変調周波数に由来し、これらをわずかに離調したものです。

#### 図7:DFM フレーミング



変調周波数ごとに曖昧さのない範囲が異なるため、各周波数における位相差が共通の距離になるのは 1 回だ けとなるので、対象(たとえば人間)の位置を正確に判定することが可能です。



 $y_{4} \neq y_{NB} = 1 2 3$ ここで、DFM のアルゴリズムは、距離 d<sub>A</sub> と d<sub>B</sub> が等しくなるような適切なウィンドウ N<sub>A</sub> と N<sub>B</sub> を特定しよう

としています。

これは曖昧さのない範囲にどのような影響を与えるのか?

この方法の利点は、 $\Delta f = f_B - f_A$ .により与えられる $A \ge B$ の周波数差を活用することです。

これにより、式(7)が以下のように変わります。

$$d = \frac{c_0}{2(f_A - f_B)} = \frac{c_0}{2\Delta f}$$

ここでは、例として、 $f_A = 22.5 \text{ MHz}$ 、 $f_B = 25.5 \text{ MHz}$  (x8 DFM モード)とします。

#### Broadcom

AFBR-S50-BAS アプリケーションノート

飛行時間の基礎

24 MHz の単一変調周波数(短距離モード)と 3MHz の最小周波数差 Δf を考慮すると、以下の比率で曖昧さのない範囲が拡大されることがわかります。

$$Ratio_{f_{mod}} = \frac{24 \ MHz}{3 \ MHz} = 8$$

言い換えれば、24 MHz の 1 つの変調周波数の代わりに 3 MHz の周波数差のある 2 つの変調周波数を使用する場合、曖昧さのない範囲を 8 倍に拡大することができます。

実用時の効果はどのようなものか?

iToF センサーが 15 メートル先の高反射対象物(たとえばキャットアイ)に向けられている下図の状況を想像 してみましょう。曖昧さのない範囲が6メートルと仮定すると、センサーの距離は実際の15メートルではな く、3メートルとなります。衝突回避などの機能は、このようなセンサーによって誤ってトリガーされてしま います。

#### 図9:実用における曖昧さ



DFM を使用することで、iToF の曖昧さのない範囲の外の対象物を検出することが可能になり、実用上の観点から、遠距離にある高反射対象物にも正しく反応できるようになります。ただし、より多くのフレーム(3 フレーム以上)の比較と追加のフィルタリングが必要なため、この方法を採用することで、反応時間が長くなり(2 フレームではなく 3 フレーム)、単一周波数動作モードに比べて最大フレームレートが 100 Hz 低下します。

## 3.4 視野(FoV)

iToF センサーの空間的有効範囲を定める FoV は、iToF センサーを使用する際の最も重要なパラメーターの一 つです。すべての AFBR-S50 センサーの受信側には、4 行 8 列の 32 ピクセルアレイがあります。設計上、各 ピクセルの FoV は 1.55°×1.55°で、Rx の全 FoV は 12.4°×6.2°となります。ピクセルが六角形であるた め、フィルファクター100%での有効 FoV は、図 10 の長方形で示すように 11.7°×5.1°となります。平均し て、Rx の FoV は 12.4°×5.4°になります。

図 10: Rx ピクセルアレイ



たとえば、双眼鏡で見るのと光学センサーで距離を測るのとでは、FoVの定義に違いがあります。後者については、発光側も重要な役割を果たします。より正確に言うと、iToF ピクセルアレイは、その発光部によって照射されていない対象物に対しては反応しません。

Broadcom

AFBR-S50-BAS-AN100 9

#### 3.4.1 発光部のスポットサイズ

このコンセプトをより深く理解するために、AFBR-S50MV85G iToF センサーの光学パラメーターをいくつか 見てみましょう。

#### 表2:光学パラメーターの例

| パラメーター       | 種類         |
|--------------|------------|
| Tx ビーム発散角    | <b>4</b> ° |
| 1m での光スポット径  | 70 mm      |
| 1mでのピクセル FoV | 27 mm      |

ビーム発散角は、受光部またはピクセルの FoV と対になる発光部の視野に相当します。これにより、ある距離における光スポットの直径を計算できます。これは、出射ビームの形状を円錐形と仮定し、下図に示すような単純な三角法を適用することによって行われます。以下のパラメーターが定義されています。

*a*: ビーム発散角

**d**: 対象物までの距離

**S**:: スポットサイズ

図11:スポットサイズの計算



簡単な三角法を適用することで、スポットサイズを以下の式により計算できます。

$$\tan \frac{\alpha}{2} = \frac{s/2}{d}$$
  $s = 2d \tan \frac{\alpha}{2} \approx d \tan \alpha$ 

 $\rightarrow s_{Spot} = d \times \tan \alpha$  (8)

以下のチャートは、式(8)を用いて異なる距離における AFBR-S50 センサーモジュールの典型的なスポット サイズ s を示しています。



なお、ビーム発散角は一般的に理想的ガウス分布に沿ったの放射強度プロファイルを持ち、ハードリミットは ありません。スポットサイズは一般的にビームの広がりを意味し、その中で強度が最大値から 1/e<sup>2</sup>(13.5%) に減少します。

#### 3.4.2 対象物の最小サイズ

ビーム発散角により発光側のスポットサイズが決まるのに対して、ピクセル FoV は、センサーが解像できる 対象物の最小サイズにとって重要なパラメーターです。次の図は、測定に影響を与えるすべての FoV の概要 を色分けで示しています。この図に示された FoV は、その比率が、ビーム発散角が通常は 4°の AFBR-S50MV85G センサーのビーム発散角の場合の各 FoV の比率と同じになるように描かれています。



図 13:センサーの FoV

また、上図は、決定パラメーターが 1.55°×1.55°で定義される単一ピクセルの FoV を示しています。そし て、式(8)を再度使用して、検出可能な対象物の最小サイズを導き出すことができます。

 $s_{object} \ge d \times \tan 1.55^{\circ}$ (9)  $\geq d \times 0.027$ 

計算を簡単にし、環境による影響を軽減するために、計算式を次のように簡略化できます。

#### Broadcom

 $s_{Object} \ge \frac{3}{100} \times d$ (10)

所定の対象物サイズSまでの最大距離dは、次のように適宜近似できます。

 $d_{maximum} \leq 33 \times s$ (11)

## 3.4.3 Tx FoV と Rx FoV の相互作用

#### 3.4.3.1 視差効果

図15: 視差の図

次の図は、AFBR-S50モジュールの光学設計と機械設計を示しています。アレイの赤いピクセルで示されると おり、Rx レンズの頂点は発光部側にずれています。この Rx レンズの焦点領域と最大受信信号強度は、ピク セル(5/2)をターゲットとしたものですが、AFBR-S50MV85Iには適用されません。

#### 図 14:AFBR-S50 の光学/機械設計



この機械的/光学的設計により、近くの対象物に対する視差効果が補正されます。視差効果は、Rx レンズが 捉えた照射光と反射光の角度が、対象物がモジュールに近づくにつれ大きくなるために発生します。



図 15 に示すとおり、視差領域は 50 cm より近い対象物に対して発生しますが、これは通常 Tx と Rx の光軸 間の距離によって定義されます。これにより、ピクセルアレイの左側に焦点領域が移動します。

注記: この設計により、すべての AFBR-S50 センサーは 32 個のピクセルのアレイを活用して視差効果 を補正でき、距離をセンチメートル単位まで測定できるようになります。

#### 3.4.3.2 典型的な検出パラダイム

以下の2つの図式は、AFBR-S50MV85Gモジュールを使用した場合に、ピクセルアレイの水平軸(x軸)(図 16)と垂直軸(y軸)(図17)上のRxおよびTxのFoVを、センサーまでの距離dの物体が通過するときの AFBR-S50センサーの光学的な検出の様子を示します。このモジュールは、最長10メートルの遠距離を測定 するのに十分な狭さでありながら、動きを検出するのに十分幅広いビーム発散角を兼ね備えています。そのた め、検出には、受光部側で通常7ピクセル(フラワーとも呼ばれます)の限られた数だけを使用します。この シナリオでは、背景が無限大であると仮定しています。

#### 図16:検出の仕組み(水平)



注記: 対象物は、TxのFoV内に入らない限り、センサーによって認識されません。対象物がTxFoV に進入すると、後方散乱光がRxレンズによって捕捉され、TxFoVとRxFoVにおける対象物 の「没入度」に応じてピクセル領域を照射します。



#### 図 17: 検出の仕組み(垂直)

#### 3.4.4 AFBR-S50 モジュールファミリー - 検出特性の概要

以下の表は、単一センサーモジュール間の差異と、それぞれの検出特性の違いを示しています。Tx ビームの 発散角とセンサーが測定できる最大距離の間には直接的な関係があることが明らかになっています。前述のと おり、AFBR-S50MV85G は両者の折衷案です。単に距離測定だけが必要な用途では、距離範囲が最大で FoV が小さい AFBR-S50LV85D が最適です。反対に、AFBR-S50MV85I は対象物認識とジェスチャー認識の用途 を対象としており、32 個のピクセルすべてを最大 FoV (Tx ビーム形状と Rx FoV が等しい)で使用できます。

#### Broadcom

#### 表 3: AFBR-S50 モジュール - 検出特性の概要

| 種類            | 波長<br>(nm) | 典型的なビ<br>ーム発散角<br>(X°×<br>Y°) | 距離範囲<br>(m) | <b>2D</b> スポッ<br>ト形状 | <b>1 m の距離での</b><br>Tx スポットサイ<br>ズ | 1 m の距離<br>での Rx 単<br>ーピクセル<br>スポットサ<br>イズ | 典型的な有効(=<br>照射対象)ピクセ<br>ル数 | 検出モード                         |
|---------------|------------|-------------------------------|-------------|----------------------|------------------------------------|--------------------------------------------|----------------------------|-------------------------------|
| AFBR-S50MV85G | 850        | 4×4                           | 0.01~10     | 円形                   | 7×7 cm                             | 2.7×2.7 cm                                 | 7~16                       | 距離、方向、<br>1D/3D 速度            |
| AFBR-S50MV85I | 850        | 13×6                          | 0.01~5      | 長方形                  | 23×10.5 cm                         |                                            | 32                         | 距離、ジェス<br>チャー、方向、<br>1D/3D 速度 |
| AFBR-S50LV85D | 850        | 2×2                           | 0.01~30     | 円形                   | 3.5×3.5 cm                         |                                            | 1~3                        | 距離、1D 速度                      |
| AFBR-S50MV68B | 680        | 1×1                           | 0.01~10     | 円形                   | 1.75×1.75 cm                       |                                            | 1~2                        | 距離、1D 速度                      |

複数の FoV と最大範囲により、AFBRS50 モジュールはさまざまな用途で使用できます。さらに、取り得るフレームレートが高いため、実装者は、AFBR-S50LV85D や AFBR-S50MV68B のような非マルチピクセルセンサーについても、1D 速度(モジュールに向かうか、モジュールから離れるか)の情報を抽出できます。また、マルチピクセルセンサーは、x-y 方向の動きや速度の検出が必要な用途に適用できます。

これらのセンサーを使用するもう一つの利点として、AFBR-S50 ファミリー内のドロップイン互換性が挙げ られます。以下は、センサーを連結させることで、たとえばより遠い距離を測定する能力を維持しながら、検 知 FoV を増大させることができる様子を示しています。

#### 図 18: センサー構成による FoV の拡大



より広い FoV と最大範囲を活用するための センサーの継続接続 ✔

## 4 静的検出アルゴリズムと動的検出アルゴリズム

## 4.1 静的 - ピクセルビニングアルゴリズム (PBA)

実際の用途での使用を考えると、iToF センサーは、照射光スポットが背景内の実体を過度に露光してしまう 状況に対処する必要があります。

後方散乱光が2つの異なる位置から照射されている場合、iToFの範囲にはどのような影響があるか?

次の図の状況を想定してみましょう。これは図 9 に似ていますが、センサーが異なる距離にある 2 つの対象 物を同時に照射しています。反射率の低い対象物 1 (黒) はセンサーから 5m、反射率の高い対象物 2 (キャッ トアイ=逆反射板) は 15m の距離に配置されています。一部のビニングされたピクセルが両方からの反射光 を受け、他のビニングされたピクセルが一方の対象物からの反射光だけを受けると仮定します。ビニングされ たピクセルは有効とみなされ、ビニングされた範囲に寄与します。

#### 図 19: Tx FoV 内の 2 つの対象物



原則として、自由空間センサーが何に反応するかは、用途のさまざまな要件によって決まりますが、通常、信 号強度とは無関係に、より近い対象物を示す必要があります。

AFBR-S50 アプリケーションプログラミングインターフェース(API)は、ピクセルビニングアルゴリズム(PBA) と呼ばれるコードの一部を実装しており、AFBR-S50 ソフトウェア開発キット(SDK)の一部であるエクスプ ローラーソフトウェアにおいて詳細に記述されています。

PBA は、振幅(信号強度に等しい)と距離に関して一定の要件を満たすピクセルを選択することによって、 1D 範囲を決定するアルゴリズムです。さらに、最良の結果を得るためのいくつかの平均化アルゴリズムが含 まれています。

ピクセルビニングフィルタリングは、以下の4つの連続する段階で動作します。

- 1. 修正されたプレフィルターマスク
- ビニングからピクセルを除外します
- 2. 振幅しきい値
  - 振幅に応じてピクセルをビニング処理します(良好な信号のみを選択するため)
- 3. 距離範囲
  - ピクセルをその範囲に従ってビニング処理します(最も近い対象物を選択するため)
- 4. ゴールデンピクセル\*

#### 図 20: PBA - AFBR-S50 Explorer



どのピクセルも振幅の要件である2を満たさない場合、ゴールデンピクセルが選択されます(有効な場合)。 これは工場でキャリブレーションされ、最も信号強度の高いピクセルに指定されます。

## **4.1.1 PBA**の例

以下の設定例は、ゴールデンピクセルのフォールバックソリューションなしで PBA がどのように機能するか を示しています。

#### 図 21: AFBR-S50 Explorer - PBA の例

| Averagin | g Mode       |              |              |         |     |     | LAWA         |     | ~   |
|----------|--------------|--------------|--------------|---------|-----|-----|--------------|-----|-----|
| Prefilte | er Mask      |              |              |         |     |     |              |     |     |
| 0        | 1            | 2            | 3            | 4       | 5   | 6   | 7            |     |     |
| 0 🗸      | $\checkmark$ | $\checkmark$ | $\checkmark$ |         |     |     | $\checkmark$ | set | clr |
| 1 🗌      |              |              |              |         |     |     |              | set | clr |
| 2        |              |              |              |         |     |     | ~            | set | clr |
| 3 🗸      | -            | ~            | -            |         |     |     |              | set | clr |
| set      | set          | set          | set          | set     | set | set | set          | set | all |
| clr      | clr          | clr          | clr          | clr     | clr | clr | clr          | clr | all |
| Absolute | Amplit       | ude Thr      | eshold       | [LSB]   |     |     |              |     | 15  |
| Relative | Amplitu      | de Thre      | shold        |         |     |     |              | 0.  | 199 |
| Minimun  | n Distan     | ce Scop      | e Enab       | le      |     |     |              |     | ~   |
| Absolute | Minim        | um Dist      | ance Sc      | ope [m] |     |     |              | 0.  | 050 |
| Relative | Minimu       | m Dista      | nce Sco      | pe      |     |     |              | 0.  | 102 |
| Golden F | ixel Ena     | ble          |              |         |     |     |              |     | ~   |

**注記:** 実行中のエクスプローラーで、個々のパラメーターの詳細なツールチップを見ながらこの例を 確認してください。 この例では、エクスプローラーソフトウェアの 1D 測定結果ボックスに、範囲、振幅、およびビニングされた ピクセル数に関する以下の値が表示されています。

| 1D Measurement Results —— |       |       |
|---------------------------|-------|-------|
| Raw Range                 | 0.847 | m     |
| Smoothed Range            | 0.837 | m     |
| Sigma Range               | 26.83 | mm    |
| Amplitude                 | 631.3 | LSB   |
| Smoothed Amplitude        | 638.0 | LSB   |
| Sigma Amplitude           | 13.15 | LSB   |
| Pixel Count               | 3     | Pixel |

#### 図 22: AFBR-S50 Explorer - PBA 使用例 - 1D 結果

アルゴリズムはどのようにして0.847 m という生の範囲結果を得たか?

より深く理解するために、16ピクセルを例とした生データのビューの一部を次の図に示します。

| Pixel (3,0)<br>Range (No Signal):<br>Raw: =<br>Mean(s): 3.7524<br>Sigma(s): 0.2468<br>Amplitudes:<br>Raw: 3.6250<br>Mean(s): 4.1250<br>Sigma(s): 0.2468 | Pixel (4,0)<br>Range: 0.9386<br>Hean(s): 0.9414<br>Sigma(s): 3.7660<br>Aaplitudes:<br>Raw: 91.4375<br>Hean(s): 91.8738<br>Sigma(s): 3.7660         | Pixel (5,0)<br>Range: 0.9629<br>Hean(5): 0.9679<br>Sigma(5): 11.0291<br>Aaplitudes:<br>Raw: 208.3750<br>Hean(5): 278.8175<br>Sigma(5): 11.0291 | Pixel (6,0)<br>Range: 1.0004<br>Mean(5): 0.9996<br>Sigma(5): 0.7201<br>Aaplitudes:<br>Raw: 115.2500<br>Mean(5): 116.5888<br>Sigma(5): 0.7201           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pixel (3,1)<br>Range (No Signal):<br>Raw:<br>Mean(s): 20.8898<br>Sigma(s): 0.2191<br>Amplitudes:<br>Raw: 3.3125<br>Mean(s): 3.1375<br>Sigma(s): 0.2191  | Pixel (4,1)<br>Range:<br>Rau: 0.9697<br>Mean(s): 0.9499<br>Sigma(s): 0.4742<br>Amplitudes:<br>Rau: 90.2500<br>Mean(s): 90.1350<br>Sigma(s): 0.4742 | Pixel (5,1)<br>Range: 0.8187<br>Nean(5): 0.8413<br>Sigma(5): 0.9966<br>Amplitudes:<br>Raw: 489.6875<br>Mean(5): 492.4625<br>Sigma(5): 6.9966   | Pixel (6,1)<br>Range:<br>Row: 0.9744<br>Mean(5): 0.9766<br>Sigma(5): 13.1495<br>Amplitudes:<br>Raw: 631.3125<br>Mean(5): 637.9950<br>Sigma(5): 13.1495 |
| Pixel (3,2)                                                                                                                                             | Pixel (4,2)                                                                                                                                        | Pixel (5,2)                                                                                                                                    | Pixel (6,2)                                                                                                                                            |
| Range:                                                                                                                                                  | Range:                                                                                                                                             | Range:                                                                                                                                         | Range:                                                                                                                                                 |
| Raw: 23.4103                                                                                                                                            | Raw: 0.8601                                                                                                                                        | Raw: 0.8670                                                                                                                                    | Raw: 1.0132                                                                                                                                            |
| Mean(s): 15.9957                                                                                                                                        | Mean(s): 0.8477                                                                                                                                    | Mean(5): 0.8908                                                                                                                                | Mean(5): 1.0148                                                                                                                                        |
| Sigma(s): 0.3527                                                                                                                                        | Sigma(s): 3.4608                                                                                                                                   | Sigma(5): 17.6274                                                                                                                              | Sigma(5): 1.6349                                                                                                                                       |
| Amplitudes:                                                                                                                                             | Amplitudes:                                                                                                                                        | Amplitudes:                                                                                                                                    | Amplitudes:                                                                                                                                            |
| Raw: 1.4375                                                                                                                                             | Raw: 209.1250                                                                                                                                      | Raw: 536.1250                                                                                                                                  | Raw: 301.3750                                                                                                                                          |
| Mean(s): 1.4075                                                                                                                                         | Mean(s): 210.3713                                                                                                                                  | Mean(5): 546.4188                                                                                                                              | Mean(6): 303.2738                                                                                                                                      |
| Sigma(s): 0.3527                                                                                                                                        | Sigma(s): 3.4608                                                                                                                                   | Sigma(5): 17.6274                                                                                                                              | Sigma(5): 1.6349                                                                                                                                       |
| Pixel (3,3)                                                                                                                                             | Pixel (4,3)                                                                                                                                        | Pixel (5,3)                                                                                                                                    | Pixel (6,3)                                                                                                                                            |
| Range (No Signal):                                                                                                                                      | Range (ho Signal):                                                                                                                                 | Range:                                                                                                                                         | Range:                                                                                                                                                 |
| Ram: #                                                                                                                                                  | Raw: "                                                                                                                                             | Raw: 0.7593                                                                                                                                    | Raw: 0.9838                                                                                                                                            |
| Mean(s): 10.7210                                                                                                                                        | Mean(s): 1.4238                                                                                                                                    | Mean(s): 0.7969                                                                                                                                | Mean(s): 0.9822                                                                                                                                        |
| Sigma(s): 0.1261                                                                                                                                        | Sigma(s): 0.1704                                                                                                                                   | Sigma(s): 2.4229                                                                                                                               | Sigma(s): 2.2345                                                                                                                                       |
| Amplitudes:                                                                                                                                             | Amplitudes:                                                                                                                                        | Amplitudes:                                                                                                                                    | Amplitudes:                                                                                                                                            |
| Raw: 2.1875                                                                                                                                             | Raw: 4.0625                                                                                                                                        | Raw: 86.8750                                                                                                                                   | Raw: 123.6250                                                                                                                                          |
| Mean(s): 2.1088                                                                                                                                         | Mean(s): 4.1588                                                                                                                                    | Mean(s): 85.2400                                                                                                                               | Mean(s): 124.4875                                                                                                                                      |
| Sigma(s): 0.1261                                                                                                                                        | Sigma(s): 0.1704                                                                                                                                   | Sigma(s): 2.4229                                                                                                                               | Sigma(s): 2.2345                                                                                                                                       |

#### 図 23: AFBR-S50 Explorer - PBA の例 - 生データ

色は図 21 の PBA フィルタータイプを表しています。以下では、除外されるピクセル p(x,y)をフィルタータイ プごとに列挙します。

- プレフィルターマスク: p(3,0)、p(3,3)
- 振幅しきい値
   絶対値:p(3,1)、p(3,2)、p(4,3)
   相対値: p(4,0)、p(4,1)、p(6,0)、p(5,3)、p(6,3) 相対値
   しきい値の定義 → p(6,1) = 631×0.199 = 125 LSB
- 最小距離範囲: p(5,0)、p(6,1)、p(6,2)、しきい値の定義 → p(5,1) = 0.8187 m (raw), 0.8187±0.05 (=dx\_abs) = 0.7687 m / 0.8687 m, 0.8187±10.2% (=dx\_rel) = 0.735 m / 0.902 m
   絶対値と相対値の最大範囲により、最終的なビニングが定義されます。

**3** つのピクセル p(4,2)、p(5,1)、p(5,2)が距離計算に有効なピクセルと判定されました。デフォルトでは、エク スプローラーと API が、ビニングされたピクセル間の平均化のために、いわゆる線形振幅加重平均(LAWA) 法を選択します。

#### 図 24: AFBR-S50 Explorer - PBA の例 - 平均化

| Enable PBA     |      | 1 |
|----------------|------|---|
| Averaging Mode | LAWA |   |

 $\begin{aligned} &Range_{binned} = \frac{\sum Range_{raw_i} \times Amplitude_{raw_i}}{\sum Amplitude_{raw_i}} \\ &= \frac{(0.8601 \times 209) + (0.867 \times 536) + (0.8187 \times 489)}{(209 + 536 + 489)} \end{aligned}$ 

= 0.847 m

## 4.2 動的 - 動的コンフィグレーションアルゴリズム (DCA)

DCA は、以下のような環境の変化に対して、発光部の信号強度と受光部の信号強度を適応させ、レーザーク ラス I 内の信号雑音 (SNR) 比を最適化する制御アルゴリズムです。

- 距離
- 反射率
- 周囲光

監視対象は以下のとおりです。

- 飽和ピクセル数
- 信号振幅(強度)

次の図は、3 つの主要な出力パラメーター、すなわち 利得、出力、および(積分)深度を使用して、検出された信号強度との関係で制御ループを描いたものです。また、DCAのパラメーター空間(y軸)の下側にある遠くて暗いターゲットと上側にある近くて明るいターゲットである極端な条件のDCAのエントリーポイントも示しています。このアルゴリズムは、公称値から開始され、上記の監視値に従って出力パラメーターを調整します。

**注記:** 実行中のエクスプローラーで、個々のパラメーターの詳細なツールチップを見ながらこの例を 確認してください。



図 25: DCA - 制御図

DCA のデフォルト設定は経験的データに基づいており、センサーの種類によって異なります。内容の詳細については、AFBR-S50 Explorer の DCA ビューを参照してください。

### 図 26: AFBR-S50 Explorer - DCA デフォルト設定の例

|   |        | Over the second |        |              |
|---|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------|
|   |        | Enable DCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | $\checkmark$ |
|   | ſ      | Saturated Px. Threshold for Lin. Decrease [#]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | 1            |
| 1 | $\neg$ | Saturated Px. Threshold for Exp. Decrease [#]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | 1            |
|   | L      | Saturated Px. Threshold for Sudden Reset [#]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | 7            |
| _ | ſ      | Target Amplitude [LSB]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | 480          |
| 2 | 4      | Low Amplitude Threshold [LSB]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | 220          |
| _ | l      | High Amplitude Threshold [LSB]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -      | 1000         |
|   | ٦      | Nom. Integration Depth [#Pattern]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | 4            |
|   |        | Min. Integration Depth [#Pattern]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | 0.06         |
|   |        | Max. Integration Depth [#Pattern]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | 16           |
| ~ |        | Nom./Max. Laser Modulation Current [mA]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | 54.6         |
| 3 | $\neg$ | Min. Laser Modulation Current [mA]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 7.1          |
|   |        | Nom. Gain Setting [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mediun | nHigh Y      |
|   |        | Min. Gain Setting [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Low    | ~            |
|   |        | Max. Gain Setting [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | High   | ~            |
| 4 | -      | Power Saving Ratio [%]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | 19.9         |
| • |        | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | Get Set      |

各項目の説明は、以下のとおりです。

1. 積分エネルギーを減少させるためのしきい値で定義された飽和ピクセル数。

注記: この設定により、環境条件が変化したときの反応速度も定義されます。

- 2. 制御ループの入力パラメーターとしての振幅値
- 3. 補正パラメーターである深度、出力、利得
- 4. 1フレームあたりのデバイスの最小アイドル時間

**注記**: この設定では、デジタル積分のコストに対して消費電流が小さくなります。

DCA からの積分深度は、これによりレーザーパターンの繰り返し回数が定義されるため、さらにアナログ積 分として定義されます。また、デジタル積分は、取得した位相の平均サンプル数を表します。どちらのタイプ も最終的な積分時間に寄与します。デジタル積分は、レーザークラスIの範囲内で最も低い再現性ノイズを実 現するように DCA によって自動的に設定されます。

## 4.2.1 DCA の例

この例も AFBR-S50 Explorer で実行されており、DCA の制御メカニズムをより詳細に表しています。次の図の DCA 設定がセンサーに適用されています。

### 図 27: AFBR-S50 Explorer - DCA の例 - 設定



また、デバイスは1Hzのフレームレートを使用しており、1DプロットのX軸の最大値は10に設定されています。例を単純化するため、DFMをオフにし、単一の変調周波数を使用しました。近くの対象物がセンサーのFoVから突然消えるという状況をシミュレートしています。

#### 発生順序:

- 1. フレーム 3-4: 飽和ピクセル数がしきい値3を超えています。
- 2. フレーム 4-5: 積分エネルギー(深度×出力)が半減します。
- 3. フレーム 5-6: 低振幅しきい値 350 LSB 未満の振幅⇒積分エネルギー(深度×出力)が適宜増大し、少な くとも目標振幅 800 LSB に達します。
- 4. フレーム 6: 最終的な距離には、3 フレーム後に到達します。

すべてのステップとその具体的な番号は、以下の図でも確認できます。



AFBR-S50 iToF センサーの評価と実装を容易にするために、AFBR-S50 Explorer の可視化ビューで作業を開始します。

## 5 目に対するレーザーの安全性

動的コンフィギュレーションアルゴリズム (DCA) は、レーザークラスを維持することで SNR を高く保ちま す。AFBR-S50 センサーのデータシートを読むと、センサー自体がレーザークラス I の範囲内に指定されてい るにも関わらず、発光部の本来のレーザークラスは 3B に指定されていると記されていることから読者は不安 になるかもしれません。

このセクションでは、データシートの追加情報として、レーザークラスIが動作中にどのように保証されるか についての詳細情報を提示します。

以下に基本的な安全確保についてまとめます。

- すべての計算の根拠: IEC 60825-1, Ed. 3.0 2014-5。
- レーザークラス1の動作は、iToF ASIC と API の両方によって、与えられたフレームレートに基づきフレームごとの積分時間を適宜調整することで保証されます。
- 光平均出力はデバイスごとに工場でキャリブレーションされています。
- iToF ASIC は、少なくとも 20%の余裕をもってバースト出力要件を満たすために、バーストに一時停止 時間を加えます。これは、所定のコンフィギュレーションに基づいて、ハードウェアにより自動的に行 われます。
- AFBR-S50 API では、レジスターへの直接アクセスが遮断されているため、レーザークラスタイミングのオーバーライドはできません。

## 5.1 動作中のハードウェアで実施される安全対策

以下は、ハードウェアにより実施される安全対策です。

■ 標準動作(API を使用)

- **2%**未満の低デューティーサイクルのレーザーパターンが使用されます。
- ソフトウェアの誤動作に左右されないハードウェアタイマーが使用されます。
- ASIC の欠陥(ESD や EOS など)による動作
  - ASIC は、トリガーが失われるたびに動作を停止するように設計されています。トリガー信号が発生 しなければ、パルス(パターン)も連続波もレーザー放射されません。
  - さらに、850 nm レーザーモジュールの場合、使用される最大ピーク電流は、実装されているレーザ ードライバーの最大電流です。ピーク電流を増大させることはできません。
  - 何らかの理由で、ある欠陥によりレーザードライバー回路から連続波出力が発生する場合、発光部側の光出力を監視している基準ピクセルは、許容出力を超えた場合に連続波出力を検出できます。

## 5.2 動作中にソフトウェアに実装される安全対策

ソフトウェアにより実施される安全対策は以下のとおりです。

- 標準動作(APIを使用)
  - DCA が積分深度とレーザー電流を調節した後、各フレームの後に目の安全チェックが行われます。
    - 積分深度、レーザー電流、およびフレームレートの積は、初期のデフォルト設定を基準として一定 に保たれます。
  - 目の安全性に関連するパラメーター調整は、DCA の保護下でのみ可能です。そのため、誤ってレー ザークラス 3B でレーザーを放射する設定を行ってしまうことはあり得ません。
  - シングルスレッドアーキテクチャ

#### 図 29: AFBR-S50 API のシングルスレッドアーキテクチャ



- ソフトウェア/ハードウェア異常時の動作
  - ソフトウェアクラッシュ、ハング、または遅延により、ASIC のトリガー(図 29 を参照)は失われ、 ASIC の動作が停止します。
  - ソフトウェアのハングや遅延が発生した場合、測定はトリガーされず、データバッファーが評価され
     ソフトウェアから消去されるまで延期されます。
  - 基準ピクセルの警告フラグは、レーザークラス違反をシステムに知らせます。
  - SPI 通信:通信中に散発的なビットエラーが発生します。
  - DCA パラメーターの目の安全性チェックは各フレームの後に行われ、あるフレームにおける散発的なビットエラーは次のフレームで解消されます。
  - SPI 通信:通信中にビットエラーが多発します。
  - タイムアウトメカニズムによりフレームが開始されません。

## 6 アプリケーションプログラミングインターフェース

このセクションでは、ソフトウェア開発キット(SDK)の一部である Argus API とも呼ばれる AFBR-S50 ア プリケーションプログラミングインターフェース(API)の概要を紹介します。

## 6.1 概要

Broadcom の AFBR-S50 センサーモジュールにはマイクロコントローラー (MCU) が実装されていないため、 エンドユーザーはセンサーのコストを削減でき、シリアルペリフェラル インターフェイス (SPI) を介して Arm Cortex-M シリーズプロセッサーに自由に接続できるほか、IRQ 処理用に GPIO を 1 つ追加できます。

図 30 に示すとおり、API 自身は事前コンパイルされた Core ライブラリーをカプセル化しており、このライ ブラリーがデバイスの安全な動作のためのレジスターへの直接アクセスを処理します。実装者は、最も一般的 な Cortex-Mx アーキテクチャ用の複数の事前コンパイル済みライブラリーから希望のものを選択できます。

シームレスな実装を実現するため、AFBR-S50 API には、ユーザーアプリケーションと関数呼び出しやコール バックを介して通信するためのソフトウェアインタフェースと、MCU や他の周辺機器とハードウェア抽象化 レイヤー(HAL)を介して通信するためのハードウェアインターフェースが備わっています。



図 30: ユーザーアプリケーションへの統合のための AFBR-S50 SDK アーキテクチャ

デフォルトでは、HAL のコードは評価キットの FRDM-KL46z を参照しており、必要に応じて他の MCU プラ ットフォームに移植する必要があります。まずは、ステップバイステップ形式の移植ガイドをダウンロードし てください(セクション 8 参考文書を参照)。

次の図は、API を介してアクセス可能なモジュールの概要を示しています。

#### 図 31 : AFBR-S50 API モジュール



表4:モジュール

| モジュール              | 説明                           |
|--------------------|------------------------------|
| 測定/デバイス制御          | 測定の開始と停止、データの評価、ステータスの取得、    |
|                    | キャリブレーションのための機能の実行など。        |
| 測定データ              | 単一ピクセルのステータスおよび測定データ、ビニング    |
|                    | された範囲および振幅の結果など。             |
| コンフィグレーション         | フレーム時間、測定モードなどの設定。           |
| キャリブレーション          | キャリブレーションデータ(たとえば、xtalk、範囲オフ |
|                    | セットなど)の取得と設定。                |
| ピクセルビニングアルゴ        | PBA 設定の取得と設定。                |
| リズム ( <b>PBA</b> ) |                              |
| 動的コンフィグレーショ        | DCA 設定の取得と設定。                |
| ンアルゴリズム            |                              |
| (DCA)              |                              |
| APIバージョン           | APIのバージョン情報の取得。              |

## 6.2 EEPROM データ

iToF ASIC には、チップ ID や工場キャリブレーションのデータなど、デバイス固有の情報を格納した EEPROM が実装されています。デバイス固有のレジスター設定を調節してセンサーに適用するために、このデータがモジュールの初期化中に一度だけ読み出されます。この EEPROM の内容には、SPI ピンを使ってアクセスする こともできますが、GPIO モードにして、独自のプロトコルに従ってピンをトグルする必要があります。

## 6.3 必要最小メモリー

- RAM : 8 kB (4 kB ヒープ + 4 kB スタック)
- ROM/フラッシュメモリー: 128 kB

詳細については、API リファレンスマニュアルを参照してください。このマニュアルは、AFBRS50 Explorer のヘルプセクションからアクセスでき、以下のディレクトリーの SDK のインストールパスにも保存されています。

<root>¥AFBR-S50SDK¥Device¥Manual¥AFBR-S50 API Ref. Manual.pdf

## 7 よくある質問

## 7.1 Broadcom の iToF センサーを使用するにはどうすればよいですか?

最も簡単な方法は、AFBR-S50 評価キットをご購入いただくことです(セクション 8 参考文書のリンクを参照)。この評価キットでは、1 行のコードもプログラミングすることなく、すぐにセンサーを使い始めることができます。SDK のユーザーガイドとわかりやすいグラフィカルユーザーインターフェースにより、Broadcom の iToF センサーの性能を確認するための包括的な情報とツール群を利用できます。

# **7.2 AFBR-S50** センサーの FoV とは何ですか? センサーが使用するピクセル数はいくつ ですか?

一般的に、すべての AFBR-S50 センサーの受信側には、32 個のピクセルがあります。ただし、使用されるピ クセルの数は、主に放射ビームが発散されるモジュールの種類に依存します。詳細は、セクション 3.4 視野 (FoV) を参照してください。

## 7.3 レーザークラス | での動作はどのように保証されますか?

詳細は、セクション5目に対するレーザーの安全性を参照してください。

## 7.4 iToF センサーの総合的な性能に影響を与えるのは何ですか?

- 1. 距離 D:信号強度約 1/D^2
- 2. 対象物/ターゲットの反射率:
  - 逆反射体(たとえばキャットアイ):信号強度×係数約1(100%)
  - 白い対象物:信号強度×0.8 超の係数(80%)
  - 黒い対象物:信号強度×0.15 未満の係数(15%)
- 3. 周囲条件:

太陽光は、受信側のショットノイズを増大させ、感度の低下を招きます。約 100 kLux (AM1.5)の太陽光に 暴露すると、最大範囲が 50%減少します。

## 7.5 なぜ PBA でプレフィルターマスクを使うのでしょうか?

たとえば、センサーが固定寸法の開口部で覆われており、いくつかの境界ピクセルに強い振幅を発生させる既 知の避けられない反射があり、それが最終的なビニング範囲に影響する場合には、時にビニングからピクセル を除外する必要があります。正しいプレフィルターマスクを使用することで、それらのピクセルを最終的な範 囲計算から除外できます。

## 7.6 AFBR-S50 API をプロジェクトに実装するにはどうすればよいでしょうか?

AFBR-S50 Core ライブラリーは静的 ANSI-C ライブラリーファイル (lib\*.a) 形式で提供され、対応する API は ANSI-C ヘッダーファイル (\*.h) 形式で提供されます。ライブラリーをリンクするようにリンカーを 設定した後で、/include フォルダにあるメインヘッダー、argus.h を格納します。詳細については、API リ ファレンスマニュアルを参照してください。このマニュアルは、AFBR-S50 Explorer のヘルプセクションから アクセスでき、以下のディレクトリーの SDK のインストールパスにも保存されています。<root>¥AFBR-S50SDK¥Device¥Manual¥AFBR-S50 API Ref. Manual.pdf

## 7.7 SDK の新しいバージョンがダウンロード可能かどうかはどうすればわかりますか?

Broadcom のホームページ(www.broadcom.com)には、登録されたダウンロードの新バージョンが利用可能 になるたびに登録ユーザーに通知するアラートシステムが実装されています。

1. iToF センサーまたは評価キットのダウンロードセクションに入り、ハイライトされた Create ボタンをクリ ックします。

#### AFBR-S50-BAS アプリケーションノート

#### 図 32 : Create ボタン

| AFBR-S50MV85G                                                        |                                              | Contact Sales | Check Inventory | Request Info | Contact TOF team       |
|----------------------------------------------------------------------|----------------------------------------------|---------------|-----------------|--------------|------------------------|
| Medium-range 3D multipixel ToF sen                                   | sor with integrated 850 nm VCSI              | EL            |                 |              |                        |
| Overview Specifications Documentation                                | Downloads                                    |               |                 |              |                        |
| If you are looking for older or archived product downli              | oads, please use the documents and downloads | search tool.  |                 | Exp          | and All   Collepse All |
| Software Development Kit 🛑 0                                         |                                              |               |                 |              | -                      |
| Current                                                              |                                              |               |                 |              |                        |
| Title                                                                |                                              | Date D        | + Туре          | 0 A          | et                     |
| AFBR.550.5DK.v.x.x-basic<br>File Size: Language:<br>15044 KB English |                                              | 07/15/2020    | D               | Ć            | Create                 |

2. アラート受信を申請します。

## 図 33 : Subscribe ボタン

| mail address        |  |
|---------------------|--|
| Enter email address |  |

3. アラート受信申請の確認と概要を確認します。

#### 図34:マイドキュメントとダウンロードのアラートの管理

Thank You

# Manage My Documents & Downloads Alerts

Thank you for subscribing to our documents and downloads alerts. Visit the Documents and Downloads page for more.

AFBR.S50.SDK.v1.1.5-basic

Unsubscribe to All



# 8 参考文書

| 参考文書名                  | 文書種別   | リンク                                                     |
|------------------------|--------|---------------------------------------------------------|
| AFBR-S50MV85G センサー     | データシート | https://docs.broadcom.com/docs/AFBR-S50MV85G-DS         |
| AFBR-S50MV85I センサー     | データシート | https://docs.broadcom.com/docs/AFBR-S50MV85I-DS         |
| AFBR-S50LV85D センサー     | データシート | https://docs.broadcom.com/docs/AFBR-S50LV85D-DS         |
| AFBR-S50MV68B センサー     | データシート | https://docs.broadcom.com/docs/AFBR-S50MV68B-DS         |
| AFBR-S50 評価キットスタートガイ   | ユーザーガイ | https://docs.broadcom.com/docs/AFBR-S50-EK-UG           |
| K                      | F      |                                                         |
| AFBR-S50 API サンプル移植ガイド | プログラミン | SDK は <u>https://docs.broadcom.com/docs/12398582</u> から |
|                        | グガイド   | ダウンロードできます。                                             |
| AFBR-S50 基準設計          | アプリケーシ | https://docs.broadcom.com/docs/AFBR-S50-RD-AN           |
|                        | ョンノート  |                                                         |

AFBR-S50-BAS アプリケーションノート

## 改訂履歴

バージョン 1.0 2021 年 2 月 10 日

■ 初版。

